Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Horizontal Pod Autoscaling (HPA) governs the spinning up and deletion of additional pods when the existing resources (CPU and Memory) of the microservice are exhausted. The deletion of the additional pods occurs as and when the resources are free or restored for the microservice. In Adeptia Connect, Autoscaling is by default enabled. You can enable HPA in Adeptia Connect by setting the required parameters in the global values.yaml file. 

...

Configuring HPA for runtime microservice

The Like other microservices, the runtime microservice pods are adjusted (scaled up or scaled down) based on the two metrics – CPU utilization, and memory utilization. However, the parameters for configuring the runtime microservice for autoscaling slightly differ from those for the rest of the microservices. 

The following table describes the autoscaling parameters for runtime microservice. You can find these parameters in the runtimeImage: section in the global values.yaml file.

ParameterDescriptionSample value
RUNTIME_AUTOSCALING_ENABLED:Parameter to enable HPA by setting its value to true.true
RUNTIME_MIN_POD:Minimum number of pods.1
RUNTIME_MAX_POD:The maximum number of pods the runtime microservice can scale up to.1
RUNTIME_AUTOSCALING_TARGETCPUUTILIZATIONPERCENTAGE:The value of CPU utilization (in percentage) at which the autoscaler spins up a new pod.400
RUNTIME_AUTOSCALING_TARGETMEMORYUTILIZATIONPERCENTAGE:The value of memory utilization (in percentage) at which the autoscaler spins up a new pod.400
RUNTIME_SCALE_UP_STABILIZATION_WINDOW_SECONDS:The duration (in seconds) for which the application keeps a watch on the spikes in the resource utilization by the currently running pods. This helps in determining whether scaling up is required or not.300
RUNTIME_MAX_POD_TO_SCALE_UP:The maximum number of pods the runtime microservice can scale up to at a time.1
RUNTIME_SCALE_UP_PERIOD_SECONDS:The time duration (in seconds) that sets the frequency of tracking the spikes in the resource utilization by the currently running pods. 60
RUNTIME_SCALE_DOWN_STABILIZATION_WINDOW_SECONDS:The duration (in seconds) for which the application keeps a watch for drop in resource utilization by the currently running pods. This helps in determining whether scaling down is required or not.300
RUNTIME_MAX_POD_TO_SCALE_DOWN:The maximum number of pods the runtime microservice can scale down to at a time.1
RUNTIME_SCALE_DOWN_PERIOD_SECONDS:The time duration (in seconds) that sets the frequency of tracking the drop in the resource utilization by the currently running pods. 60

...