Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The parameters for configuring the runtime microservice for autoscaling slightly differ from those for the rest of the microservices. The following table describes the autoscaling parameters for runtime microservice. You can find these parameters in the the runtimeImage: section in the global values.yaml file.

ParameterDescriptionDefault value
RUNTIME_AUTOSCALING_ENABLED:Parameter to enable autoscaling by setting its value to true.true

RUNTIME_MIN_POD:

Anchor
RUNTIME_AUTOSCALING_TYPE
RUNTIME_AUTOSCALING_TYPE
Minimum number of pods.1

RUNTIME_MAX_POD:

The maximum number of pods the runtime microservice can scale up to.1

RUNTIME_AUTOSCALING_CRITERIA_MESSAGE_COUNT: 

Variable to define whether you want the autoscaling to happen based on Message Queue count.

Setting the value for this variable to true denotes that the autoscaling of the runtime pod happens based on the number of messages in queued state in the Message Queue.

Info
This variable is applicable only when you use KEDA for autoscaling.


true

RUNTIME_AUTOSCALING_CRITERIA_CPU:

Variable to define whether you want the autoscaling to happen based on CPU usage.

Setting the value for this variable to true denotes that the autoscaling of the runtime pod happens based on the CPU usage.

true

RUNTIME_AUTOSCALING_CRITERIA_MEMORY:

Variable to define whether you want the autoscaling to happen based on memory usage.

Setting the value for this variable to true denotes that the autoscaling of the runtime pod happens based on the memory usage.

false
RUNTIME_AUTOSCALING_QUEUE_MESSAGE_COUNT: 

The threshold value of the number of messages in queued state in the Message Queue at which KEDA spins up a new pod.

Info
This variable is applicable only when you use KEDA for autoscaling.
5RUNTIME_AUTOSCALING_TARGETCPUUTILIZATIONPERCENTAGE:Value in percentage of CPU requests set in the global values.yaml for the runtime pods at which a new pod spins up.400
RUNTIME_AUTOSCALING_TARGETMEMORYUTILIZATIONPERCENTAGE:Value in percentage of memory requests set in the global values.yaml for the runtime pods at which a new pod spins up.400
RUNTIME_AUTOSCALING_QUEUE_MESSAGE_COUNT: 

The threshold value of the number of messages in queued state in the Message Queue at which KEDA spins up a new pod.

Info
This variable is applicable only when you use KEDA for autoscaling.



RUNTIME_SCALE_UP_STABILIZATION_WINDOW_SECONDS:The duration (in seconds) for which the application keeps a watch on the spikes in the resource utilization by the currently running pods. This helps in determining whether scaling up is required or not.300
RUNTIME_MAX_POD_TO_SCALE_UP:The maximum number of pods the runtime microservice can scale up to at a time.1
RUNTIME_SCALE_UP_PERIOD_SECONDS:The time duration (in seconds) that sets the frequency of tracking the spikes in the resource utilization by the currently running pods.60
RUNTIME_SCALE_DOWN_STABILIZATION_WINDOW_SECONDS:The duration (in seconds) for which the application keeps a watch for drop in resource utilization by the currently running pods. This helps in determining whether scaling down is required or not.300
RUNTIME_MAX_POD_TO_SCALE_DOWN:The maximum number of pods the runtime microservice can scale down to at a time.1
RUNTIME_SCALE_DOWN_PERIOD_SECONDS:The time duration (in seconds) that sets the frequency of tracking the drop in the resource utilization by the currently running pods.60

...

To enable HPA, you need to set the parameters as described below for each of the microservices individually. You can find these parameters in the respective section of each microservice in the global values.yaml file.

ParameterDescriptionDefault value

autoscaling:

Anchor
type
type


      enabled: 

Parameter to enable autoscaling by setting its value to true.true
      criteria:

               cpu:

Variable to define whether you want the autoscaling to happen based on CPU usage.

Setting the value for this variable to true denotes that the autoscaling of the microservices pods happens based on the CPU usage.

true

              memory:

Variable to define whether you want the autoscaling to happen based on memory usage.

Setting the value for this variable to true denotes that the autoscaling of the microservices pods happens based on the memory usage.

false
      minReplicas:Minimum number of pods for a microservice.1
      maxReplicas:The maximum number of pods a microservice can scale up to.1
      targetCPUUtilizationPercentage: 

Value in percentage of CPU requests set in the global values.yaml for the pods at which the HPA spins up a new pod.

400
      targetMemoryUtilizationPercentage: Value in percentage of memory requests set in the global values.yaml for the pods at which the HPA spins up a new pod.400
      behavior:

        scaleUp:

          stabilizationWindowSeconds: The duration (in seconds) for which the application keeps a watch on the spikes in the resource utilization by the currently running pods. This helps in determining whether scaling up is required or not.300
          maxPodToScaleUp:The maximum number of pods a microservice can scale up to at a time.1
          periodSeconds:The time duration (in seconds) that sets the frequency of tracking the spikes in the resource utilization by the currently running pods.60
        scaleDown
       scaleDown:

          stabilizationWindowSeconds: The duration (in seconds) for which the application keeps a watch for drop in resource utilization by the currently running pods. This helps in determining whether scaling down is required or not.300
          maxPodToScaleDown: The maximum number of pods a microservice can scale down to at a time.1
          periodSeconds: The time duration (in seconds) that sets the frequency of tracking the drop in the resource utilization by the currently running pods.60


Load balancing among the runtime pods 

...